

Sense and nonsense of patient shielding

Joint ABR/BVS - BHPA session BHPA symposium 2022

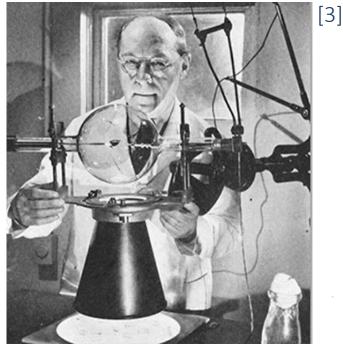
What's the fuss about ?		"Loden schort helpt niet tegen röntgenstraling"		
	The New ?	The New York Times		
AAPM				-
POLICY NUMBER	POLICY NAM	NE	POLICY DATE	
PP 32-A	AAPM Position Shielding	n Statement on the Use of Patient Gonadal and Fetal	4/2/2019	
Odisee		Het gaat al decennia zo: bevindt u zich in een ruimte waar röntgenfoto's worden genomen, dan krijgt u door het ziekenhuispersoneel een zware loden schort omgegord. Omdat lood de straling tegenhoudt en zo voortplantingsorganen of eventuele zwangere buiken beschermt. Alleen blijkt dat helemaal niet te kloppen, schrijft <i>The New York Times</i> .	patient shielding	[1]

AAPM Position Statement on the Use of Patient Gonadal and Fetal Shielding

- Endorsed by ACR, NCRP, BIR, NCR
- EFOMP-EFRS-ESR-ESPR-EuroSafeImaging-EURADOS-EADMFR consensus statement
- Despite widespread use ?

Historical perspective

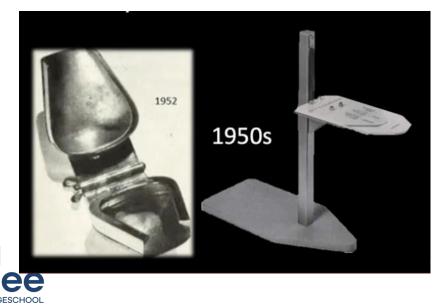
- Publication on discovery of X-rays (1895)
 - +14 days: first dental radiograph by F. O. Walkhoff
 - 1896: 30 patients, 30' ~ 3Gy : loss of hair
- First users
 - Potential harmful effects of X-rays
- Concerns about
 - 1. Hereditary effects
 - 2. Harmful effects on the fetus
 - 3. Cancer risk


First research into hereditary effects

· 1927

- Dr. Hermann Joseph Muller
- High doses of X-rays
- Drosophila

 Nobel prize for the discovery of induction of mutations after exposure to X-rays



History ~ hereditary effects

- Experiments with insects and small mammals
- After 1945: public interest
- 1950s: Paul C. Hodges
 - Extrapolation of data to humans
 - Use of gonad shielding recommended

History ~ hereditary effects

• 1970s : guidelines, legislation, education

Food and Drug Administration [21 CFR Part 1000] [Docket No. 75N-0148] SPECIFIC AREA GONAD SHIELDING	"Itprotects the germinal tissue of patients from radiation exposure that may cause genetic mutations"	
	"Gonadal shielding should only be used when the clinical objectives of the exam will not be compromised."	
FEDERAL GUIDANCE REPORT NO. 9 October 1976	Operator Responsibility: "to properly collimate the X-ray beam and to use shielding where appropriate and practicable."	

- · 2022 ...
 - 1. Hereditary effects after diagnostic exposures have not been observed
 - 2. Dose per exam decreased dramatically

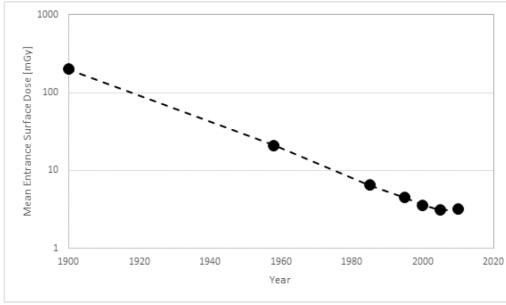
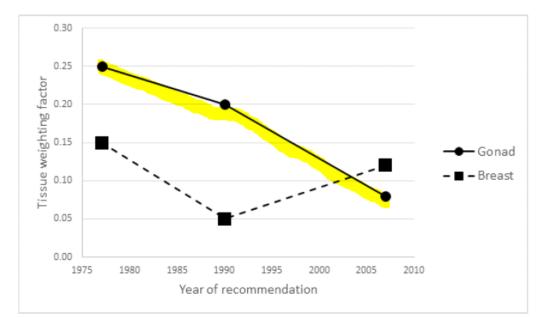
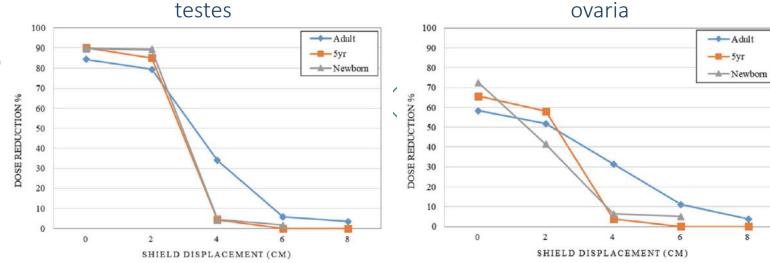


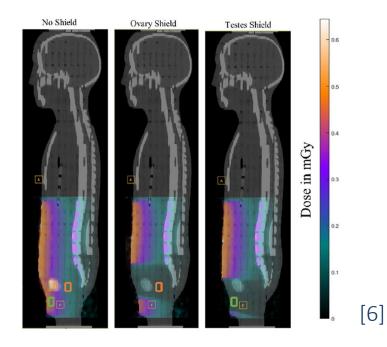
Figure 3.1 Example change in mean entrance surface dose values with time for an AP Pelvis radiograph. Based on doses reported in the literature.^{1,2,3}

[5]

• 2022 ...

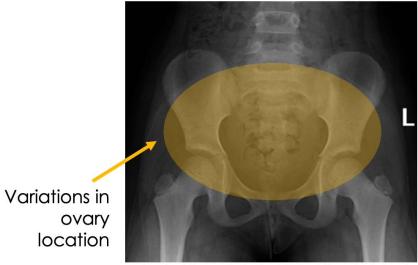
- 1. Hereditary effects after diagnostic exposures have not been observed
- 2. Dose per exam decreased dramatically
- Progressive insight into radiation sensitivity of organs and tissues


Figure 3.2 Tissue weighting factor versus year of recommendation by the ICRP for two particular tissue types.^{4, 5, 6}
[5]

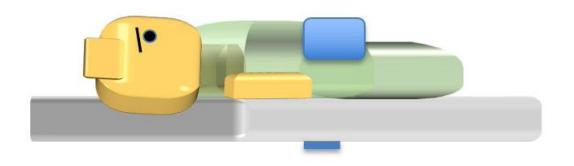
2022 ...

- 1. Hereditary effects after diagnostic exposures have not been observed
- 2. Dose per exam decreased dramatically
- 3. Progressive insight into radiation sensitivity of organs and tissues
- 4. Effectiveness of gonad shielding limited in practice
 - Within 1° beam



- Within 1° beam
 - Location of ovaria
 - Cover relevant anatomy
 - Artifacts ~ image quality

adapted from data in ME Bardo, et al. Ped Rad (2009) 39:253-259.

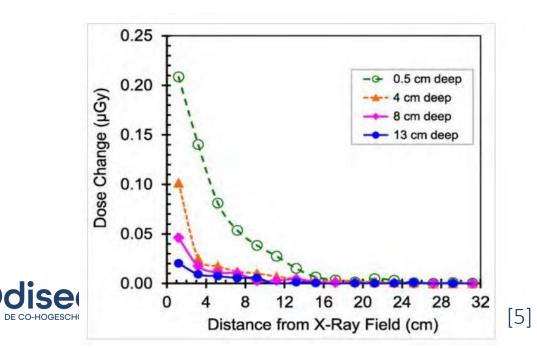

Retakes !

Within 1° beam

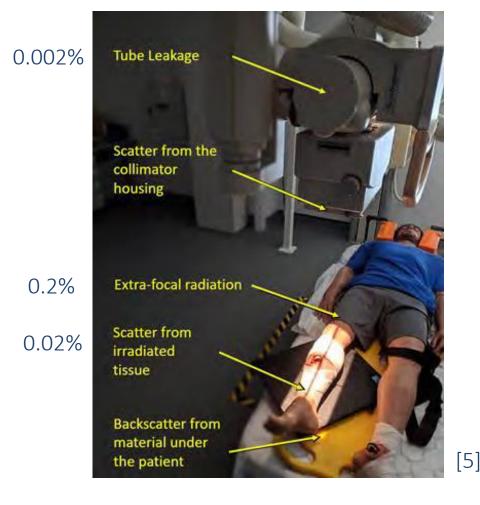
- Location of ovaria
- Cover relevant anatomy .
- Artifacts ~ image quality • \rightarrow retakes

.

- Use of
 - Automatic exposure control (AEC)
 - Automatic brightness control (ABC)
 - Automatic dose rate control (ADRC)
 - Tube current modulation (TCM)



Tube current *∧*



Within 1° beam

- Outside 1° beam
 - External scatter: order of magnitude max # μGy/s
 - Internal scatter:
 - · \searrow with distance to 1° field
 - \cdot $\$ with depth in patient

% of 1° beam

Gonad shielding: conclusion

- 1. Has no or negligible benefit to patient health
 - Absolute value of risk reduction is very limited
- 2. Could have a negative effect on exam
 - Possibly obstructive for exam
 - High chance on increased dose / repeat exam

2 Protection of the unborn child

Sense and nonsense of patient shielding

Risk in utero

- Stochastic effects \rightarrow part 3
- Deterministic effects
 - Lethal effects
 - Malformations, retardation
 - Risk \nearrow with exposure to acute doses above 100 mGy
 - Risk depends on stage of pregnancy
 - Fetal dose ~ quantity and quality of beam
 ~ position relative to 1° beam

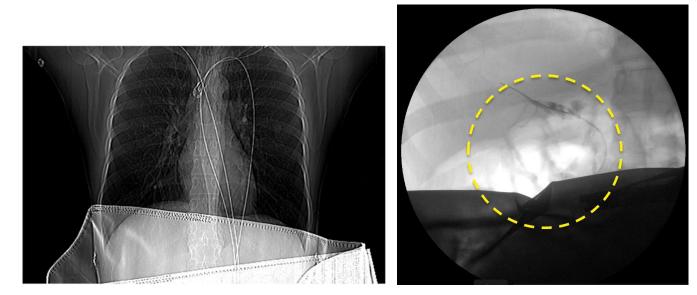
Odisee				
DE CO-HOGESCHOOL				

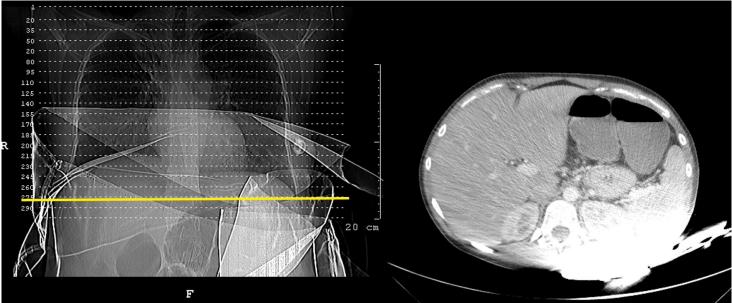
Be	aseline Risks
•	~20%1
•	3%-5% ²

Within 1° beam

Typical doses without lead protection

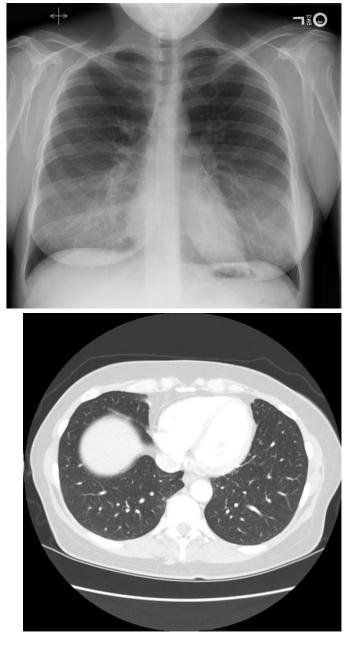
- Abdomen/pelvis X-ray < 1-3 mGy
- Fluoro/angio: ! for longer procedures
- CT abdomen/pelvis: up to 20 mGy

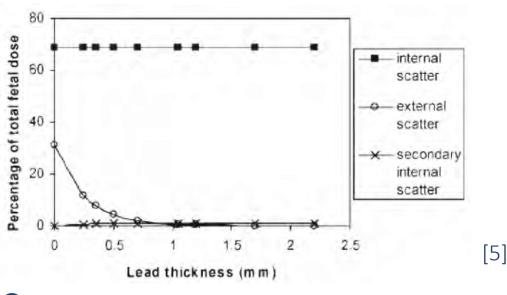



Within 1° beam

- Typical doses
- Risks:
 - AEC / ABC / ADRC / TCM:
 dose
 - Artifacts / image quality
 - Cover relevant anatomy

→ Repeat exam




- Within 1° beam
- Outside 1° beam
 - Typical doses without lead protection
 - X-ray cervical spine, extrimities: < 0.001 mGy
 - X-ray thorax: < 0.002 mGy
 - Fluoro/angio: very low but variable
 - CT thorax, PE: < 1 mGy
 - e.g. CT PE without lead apron: 0.17 mGy CT PE with lead apron: 0.15 mGy

• Outside 1° beam

Origin of exposure: Primarily internal scatter

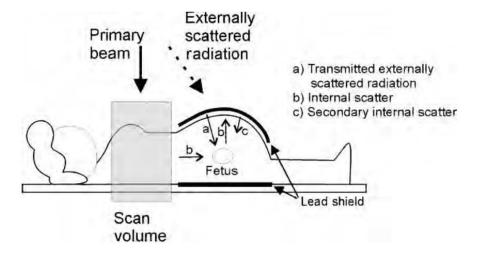
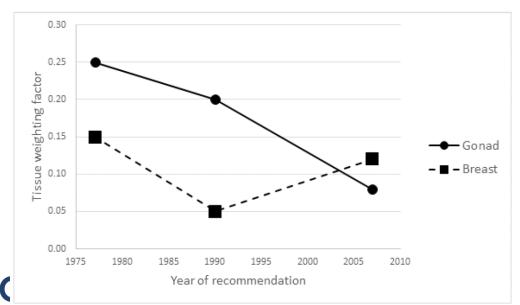
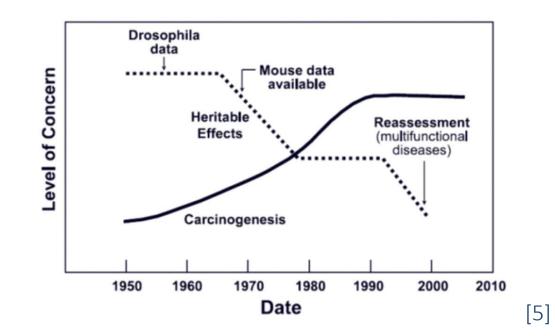


Figure 9.11 Schematic showing the three sources of scattered photons that contribute to the fetal dose from a chest CT scan. (Reproduced from Iball, Kennedy and Brettle 2008.⁴⁶)

Shielding of the unborn child: conclusion

- 1. Deterministic effects ~ range of diagnostic doses
 - Absolute value of risk reduction is very limited
- 2. Could have a negative effect on exam
 - Possibly obstructive for exam
 - High chance on increased dose / repeat exam





Patient's cancer risk

- Uncertainties
- Balancing risk vs benefits
- Variable for different tissues

Patient's cancer risk

- Protection of radiosensitive organs
 - Breast
 - Thyroid

* exception: ceph and dental CBCT large FOV units: AP, <5 cm of 1° beam, anatomy not covered, no interference with AEC \rightarrow involve MPE

! Providing: good practice,ALARA, optimized exposure

• Eye lens

- Fluoroscopy procedures
 - ! Protective materials for protection of personnel

Cancer risk after exposure in utero

- Conservative estimate
 - 100 mGy fetal dose ~ risk x 2

Fetal dose	Risk of developing childhood cancer	Risk of NOT developing childhood cancer	[7]
~0	0.2600 %	99.74 %	CT PE with vs without lead apron
0.02 mGy	0.2601 %	99.74 %	
0.1 mGy	0.2605 %	99.74 %	
1 mGy	0.265 %	99.71 %	↓
10 mGy	0.312 %	99.69 %	Weigh against risks of use of shielding
100 mGy	0.52 %	99.48 %	

- 1. Increase of cancer risk at diagnostic doses : very low
- 2. Advantage of (limited) dose reduction << risks associated with use of shielding

Communication of radiation risks

Communication

- · Different reasons NOT to use gonad or fetal shielding
- But:
 - Long tradition
 - Perception of professionals
 - Public perception
- Risks associated with overestimating radiation risks
 - Postponing exams
 - Depriving adequate care
 - Missed or postponed diagnosis
 - Unneccessary fear (parents)

Communication

- Consistent communication & education
 - \rightarrow doesn't help
 - ightarrow possibly obstructive for exam
 - ightarrow possibly higher dose

Changing a tradition is not easy...

Want to know more? FAQs?

- > www.aapm.org/cares
- BIR Guidance on using shielding on patients for diagnostic radiology applications + leaflets

References

[1] AAPM PP 32-A: AAPM Position Statement on the Use of Patient Gonadal and Fetal Shielding. (2019).

- Retrieved from https://www.aapm.org/org/policies/details.asp?id=468&type=PP¤t=true
- [2] Riaud. First dental radiograph (1896). J. Dent Health 2018; 9(1):33 34.
- [3] Retrieved from https://www.genetics.org/content/202/2/369 and https://www.embl.org/news/science/what-we-learned-from-fruit-flies .
- [4] Hodges PC, Strandjord NM, McCrea A. A testicular shield. JAMA. 1958; 167(10): 1239 1240.
- [5] The Britisch Institute of Radiology. Guidance on using shielding on patients for diagnostic radiology applications.

BIR published online 2020.

- [6] Somasundaram E et.al. Achievable dose reductions with gonadal shielding for children and adults during
 - abdominal/pelvic radiographic examinations: A Monte Carlo simulation. Med. Phys. 2020; 47(11): 5514 5522.
- [7] Retrieved from https://w3.aapm.org/cares
- [8] Hiles P, Gilligan P, Damilakis J et al. European consensus on patient contact shielding. Physica Medica 96 (2022): 198-203.

Thank you for your attention!

Questions?

Liesbeth Eloot@odisee.be

www.odisee.be

Onderzoek?

(E)

Navormingsaanbod?

Basisopleidingen?

